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Abstract

The adaptive plasticity of mitochondria within a skeletal muscle is regulated by signals converging on a myriad of regulatory
networks that operate during conditions of increased (i.e., exercise) and decreased (inactivity, disuse) energy requirements.
Notably, some of the initial signals that induce adaptive responses are common to both conditions, differing in their magni-
tude and temporal pattern, to produce vastly opposing mitochondrial phenotypes. In response to exercise, signaling to per-
oxisome proliferator-activated receptor (PPAR)-c coactivator-1a (PGC-1a) and other regulators ultimately produces an
abundance of high-quality mitochondria, leading to reduced mitophagy and a higher mitochondrial content. This is accompa-
nied by the presence of an enhanced protein quality control system that consists of the protein import machinery as well
chaperones and proteases termed the mitochondrial unfolded protein response (UPRmt). The UPRmt monitors intraorganelle
proteostasis, and strives to maintain a mito-nuclear balance between nuclear- and mtDNA-derived gene products via retro-
grade signaling from the organelle to the nucleus. In addition, antioxidant capacity is improved, affording greater protection
against oxidative stress. In contrast, chronic disuse conditions produce similar signaling but result in decrements in mitochon-
drial quality and content. Thus, the interactive cross talk of the regulatory networks that control organelle turnover during
wide variations in muscle use and disuse remain incompletely understood, despite our improving knowledge of the tradi-
tional regulators of organelle content and function. This brief review acknowledges existing regulatory networks and summa-
rizes recent discoveries of novel biological pathways involved in determining organelle biogenesis, dynamics, mitophagy,
protein quality control, and antioxidant capacity, identifying ample protein targets for therapeutic intervention that determine
muscle and mitochondrial health.
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INTRODUCTION

The adaptive plasticity of skeletal muscle mitochondria
in response to alterations in energy demand is firmly
established. Mitochondrial content increases in response
to exercise and diminishes following periods of disuse.
These dramatic changes have an impact on the efficiency
of metabolism, substrate utilization, fatigue processes, as
well as muscle phenotype and performance. However, the
regulatory processes that control mitochondria in muscle
are incompletely understood. Novel pathways continue to
be discovered that add additional layers of complexity to
already redundant systems that are in place to mediate
changes in mitochondrial synthesis (i.e., biogenesis) and
degradation (i.e., mitophagy). Regulation of these two
arms of the organelle “turnover” pathway must be finely
tuned to refresh and maintain a high-quality organelle
pool over time. In addition, knowledge of these pathways
continues to be important for the identification of molecu-
lar targets that, if amplified, can have therapeutic benefits
for muscle health.

REMODELING OF THE MITOCHONDRIAL
RETICULUM

Characteristics of the Mitochondrial Network

Skeletal muscle mitochondria exist in a dynamic network,
or reticulum, that is extensively distributed throughout the
cell (1), in a cell type and metabolic state-dependent manner.
For example, in contrast to muscle, such as in the liver and
kidney, mitochondria can resemble the classic, textbook
depictions as singular, oval-shaped structures (2). This differ-
ence between cell types may be a result of the unique topol-
ogy of energy utilization within elongatedmuscle cells, with a
dispersion of ATPases within myofibrils that span the entire
length of the cell. The energy requirements ofmuscle contrac-
tion require a uniquemitochondrial phenotype that facilitates
the rapid, large-scale diffusion of adenosine triphosphate
(ATP), along with the propagation of the membrane potential,
which serves as the driving force for ATP synthesis (3).

The mitochondrial reticulum in muscle is capable of
expansion or fragmentation. This morphological plasticity
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is made possible by changes in the balance of organelle fis-
sion and fusion processes, resulting in the remodeling of
the organellar network in response to altered physiological
demands. Localizedmitochondrial dysfunction stimulates fis-
sion, whereby a portion of the defective organelle is retracted
from the network and ultimately degraded within the lyso-
some via mitophagy. Fission is regulated by the cytosolic
GTPase dynamin-related protein 1 (Drp1), mitochondrial-local-
ized fission 1 protein (Fis1), and anchored receptors mitochon-
drial fission factor (MFF), MiD49 and MiD51. Fis1 performs
outer mitochondrial membrane (OMM) fission and recruits
Drp1 where it can bind to Fis1 and the other receptors. Drp1
subsequently oligomerizes and arranges in a ring-like struc-
ture to break off mitochondrial fragments in a GTP-depend-
ent manner. The deletion of Drp1 causes an accumulation of
dysfunctional organelles with impaired respiration, likely a
result of impaired mitophagy, and yields a severe myopathic
phenotype characterized by muscle weakness and atrophy
(4, 121). The overexpression of Drp1 also leads to these detri-
mental muscular outcomes, possibly due to the altered local-
ization of mitochondria (5, 6).

Conversely,mitochondrialmembrane fusion occurs through
extension of the preexisting network. Fusion of the OMM is
orchestrated by mitofusins, mitofusin 1 (Mfn1) and mitofusin 2
(Mfn2), whereas optic atrophy 1 (OPA1) permits the fusion of
the inner mitochondrial membrane I (IMM), having a signifi-
cant impact on cristae organization. Mfn2 ablation in skeletal
muscle generates reductions in mitochondrial respiration,
observed concomitantly with increases in reactive oxygen
species (ROS) emission and muscle atrophy (7), whereas the
deletion of OPA1 is embryonic lethal. Interestingly, balanc-
ing fission and fusion through the knockdown of Drp1 in
OPA1 knockout (KO) animals improves oxidative stress and
the muscle phenotype (8), indicating that a balance
between fission and fusion regulatory proteins is critical for
the maintenance of the organelle network.

Mitochondrial Dynamics in Exercise and Disuse
Regularly performed exercise alters the balance of regulatory

protein expression inmuscle, favoring fusion and organelle net-
work formation, evident in both animals and humans (9, 10).
There are physiological advantages to this network configura-
tion, with improved mitochondrial respiration, shorter diffu-
sion distances for substrates and O2, a better platform for lipid
diffusion and subsequent oxidation, with the potential of reduc-
ing lipotoxicity and insulin resistance (11, 12). Indeed, exercise
can also serve to correct the deficits in mitochondrial dynamics
and morphology evident in cancer cachexia (13) and during
chronicmuscle disuse (14). Mfn-1 and -2 appear to be critical for
this adaptation, since the absence of these isoforms in combina-
tion results in impaired oxidative phosphorylation, poor endur-
ance performance, and cannot be rescued by a period of
exercise training (15). Taken together, these data indicate that
physiologically meaningful improvements in mitochondrial
morphology occur following chronic contractile activity and a
period of exercise training, yielding a more reticular morphol-
ogy and enhanced organelle quality.

Conversely, more fragmented and “simple” muscle mito-
chondria are observed in conditions of disuse-induced atro-
phy, aging,metabolic diseases, andmitochondrialmyopathies,
and contribute to decrements in organelle quality and function

(17, 18). Denervation and hindlimb unloading, two models of
muscle disuse, produce a cellular environment that favors mi-
tochondrial fission. Reductions in the protein expression of
fusion machinery are observed, concomitant with the activat-
ing phosphorylation of Drp1 in the early stages of unloading
(10, 14, 19). A prolonged period of disuse achieved with 7 days
of denervation yields in a reduced fusion:fission regulatory
protein balance (10; Table 1). The effects of muscle disuse
might be preventable via muscle preconditioning by perform-
ing an exercise training protocol before unloading. This could
attenuate the detrimental alterations in mitochondrial dy-
namics and rescue reductions in mitochondrial content and
respiration brought on by disuse (14). Collectively, these find-
ings illustrate the importance of consistent network remodel-
ing and the optimal regulation of mitochondrial distribution
as a necessary facet of mitochondrial quality control in skele-
tal muscle.

MITOCHONDRIAL BIOGENESIS

Regulation of Mitochondrial Biogenesis

Changes in mitochondrial volume in muscle are mediated
by transcriptional regulators that induce a host of nuclear- and
mitochondrially encoded genes. The synthesis of mitochon-
dria requires �1,200 protein gene products, with the vast ma-
jority originating from the nucleus, and an additional 13
protein gene products transcribed from mtDNA (52). Thus,
changes in functional mitochondrial content necessitate the
coordinated expression of both nuclear- and mitochondrially
derived genes. Here, we briefly highlight the important roles of
traditional and newly uncovered regulators of mitochondrial
biogenesis under conditions of exercise and disuse.

PGC-1a.
The transcriptional coactivator peroxisome proliferator-acti-
vated receptor (PPAR)-c coactivator-1a (PGC-1a) has long been
heralded as the master regulator of mitochondrial biogenesis
(53). PGC-1a drives the expression of genes transcribing respi-
ratory complex subunits, protein import machinery (PIM),
and antioxidants via its interaction with various transcription
factors, such as PPARa/d, transcription factor (TF)b1, estrogen-
related receptors (ERRs) and perhapsmost notably, nuclear re-
spiratory factors-1 and -2 (NRF-1 and -2), which regulate the
expression of the transcriptional regulator mitochondrial tran-
scription factor A (TFAM; 120, 122). Overexpression of PGC-1a
augments mitochondrial content and the proportion of type I
fibers, culminating in enhanced endurance capacity and fa-
tigue resistance (54). Conversely, studies using PGC-1a KO ani-
mals, or using in vitro PGC-1a silencing, reveal reductions in
mitochondrial content and quality (55), and a muscle-specific
shift in fiber type composition toward a more glycolytic phe-
notype (56). An isoform of PGC-1, PGC-1b, is also capable of
regulating the expression of nuclear-encoded mitochondrial
genes, although PGC-1b KO studies indicate that PGC-1a may
be the predominant regulator of mitochondrial biogenesis
(57). In addition, PGC-1a splice variants also add complexity to
themolecular adaptations of muscle to exercise. Transcription
of the alternative promoter of PGC-1a and subsequent splicing
yields PGC-1a4, responsible for inducing IGF-1 expression, in
contrast to the classic oxidative phosphorylation (OXPHOS)
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targets of PGC-1a, thereby promoting hypertrophy in response
to resistance exercise (58). In addition, endurance exercise
stimulates the transcription of the PGC-1a-b and PGC-1a-c var-
iants originating from the alternative promoter, which may
account for the majority of the total increase of PGC-1a mRNA
with acute exercise (59). However, although PGC-1a protein
expression is sufficient to drive changes in mitochondrial con-
tent and function, its presence is not necessary for mitochon-
drial biogenesis inmuscles subjected to exercise (60).

TFAM.
The regulation of TFAM by PGC-1a provides a mechanism in
which mtDNA gene expression can parallel the transcription
process occurring at the nucleus. TFAM facilitates the tran-
scription of mitochondrially encoded genes by unwinding the
mtDNA promotor region for the binding of transcriptional reg-
ulators within the D-loop region (61). In addition, TFAMmedi-
ates mtDNA replication and packaging (62), promoting
enhanced mtDNA copy number and stability to match the
increasing mitochondrial volume during biogenesis. The ab-
sence of TFAM results in embryonic lethality in knockout mice
(63), and even partial knockdown of TFAM results in decreases
in mtDNA copy number and mitochondrial respiration, result-
ing in negative consequences for muscle force production (63,
64). However, overexpression of TFAM is also deleterious, per-
haps as a result of excessive DNA compaction resulting in sup-
pression of DNA transcription. This suggests the importance of
maintaining TFAM at optimal levels within the organelle.

p53.
Widely regarded as a potent tumor suppressor protein impli-
cated in a variety of cancers since its discovery 40 yr ago, the
functions of p53 as a contributor to mitochondrial turnover

are now being appreciated (24, 39). p53 influences the tran-
scription of genes encoded by both the nuclear and mito-
chondrial genomes, whereas also physically interacting with
TFAM in the mitochondrion and modulating mtDNA tran-
scription (32). Coinciding with changes in gene expression,
the mitochondrial localization of p53 and binding to TFAM
on mtDNA is observed in the recovery period, notably 3 h
postexercise (32). The transcription factors PGC-1a, TFAM,
NRF-1, the assembly factor SCO2, and mitochondrially
derived cytochrome c oxidase subunit II (COX-II) are some of
the downstream targets of p53, establishing a role for this
protein in the maintenance of mitochondrial content and
function basally, and under stress conditions (28, 39). Whole
body p53 knockout animals display reduced basal mitochon-
drial content, diminished COX enzyme assembly, and poor
organelle function in muscle (65, 66). However, muscle-spe-
cific p53 knockout mice do not harbor the same degree ofmi-
tochondrial derangements (24, 67), supporting the existence
of pathway redundancies in the basal regulation of mito-
chondrial biogenesis in muscle. Nevertheless, the impor-
tance of p53 in organelle homeostasis in muscle is further
underscored when assessing mitochondrial adaptations
under stress conditions such as exercise or disuse.

Mitochondrial Biogenesis in Exercise and Disuse

The signaling for mitochondrial biogenesis in skeletal mus-
cle is fine-tuned to the imposed energy demands, which
change dramatically during exercise or inactivity. A single
exercise bout elicits amyriad of intracellular changes that con-
verge on the upstream activators described earlier. For
instance, during exercise, an increase in cytosolic Ca2þ , the
rapid hydrolysis of ATP into AMP, and transient increases in

Table 1. Summary of signaling and changes in mRNA and protein expression leading to mitochondrial adaptations in
response to short-term and long-term exercise training or disuse in skeletal muscle

Exercise Training Disuse

Early Late References Early Late References

Signaling
Cytosolic Ca2þ : $ (20) : : (21)
ROS emission : ; (22, 23, 24) : :: (25, 26, 27)
AMPK activation :: : (22, 28, 29) : : (14, 30, 31)

mRNA
PGC-1a : $ (24, 28) ; ; (14, 30)
p53 ; ; (24, 32) : : (30)
TFAM : $ (24, 32) ; : (30, 33)
Nrf2 : : (34, 35) : : (26, 30, 36)
UPRmt : : (37, 38) ? ; (39)

Proteins
PGC-1a : :: (24, 40) ; ;; (14, 26, 27)
p53 : ; (24, 41) : : (30)
TFAM : $ (24, 28) ; ;; (27)
Nrf2 : ? (42, 43, 44) : ; (45, 46)
UPRmt ? : (37, 38) ; : (39, 47)

Processes
Fusion:fission ratio : : (9, 10) ; ; (10, 14, 48)
Mitophagy : ; (22, 23, 49) : ; (25)

Cellular outcomes
Mitochondrial content : :: (23, 37, 40) ; ;; (33, 47)
Mitochondrial respiration : :: (23, 50) ; ;; (25)
Mitochondrial network expansion : :: (1, 51) ; ; (10, 48)
Mitochondrial network fragmentation ? ; (1, 51) : : (10, 48)

AMPK, AMP-activated protein kinase; Nrf2, nuclear factor erythroid 2-related factor 2; PGC-1a, peroxisome proliferator-activated receptor
gamma co-activator-1 alpha; ROS, reactive oxygen species; TFAM, mitochondrial transcription factor A; UPRmt, mitochondrial unfolded pro-
tein response. :, increase; ::, further increase; ;, decrease; ;;, further decrease;$, no change; ?, still in question.
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ROS associated with contractile activity stimulate a plethora of
kinases, (Fig. 1; Table 1), which are each capable of activating
PGC-1a (68, 69). Furthermore, PGC-1a, p53, and TFAM are sub-
ject to posttranslational modifications, promoting their pro-
tein stability, or their nuclear or mitochondrial localization,

and enhanced DNA binding to influence transcription. The
cumulative effect of many acute exercise signaling events
increases the expression and activity of these key biogenesis
regulators, leading to the coordinated upregulation of both nu-
clear and mitochondrially encoded genes (32), culminating in

Figure 1. Mitochondrial biogenesis and
fusion. A: muscle contraction evokes the rise
of intracellular signals to promote mitochon-
drial biogenesis. These include cytosolic
Ca2þ , ROS, and AMP levels, the latter arising
as a product of ATP turnover. B: these signals
activate kinases including AMPK, as well as
phosphatases and other enzymes to promote
posttranslational modifications (PTMs) of tran-
scription factors that converge to facilitate the
transcription of PGC-1a and other regulators.
C: the activation of AMPK stimulates the nu-
clear activity of PGC-1a. PGC-1a enhances the
transcriptional function of many nuclear recep-
tors present on the promoters of NuGEMPs. D:
upon the transcription of NuGEMPs, mRNAs
exit the nucleus and are translated into pro-
teins on cytosolic ribosomes. These gene
products, including TFAM, are imported
through TOM and TIM channels in the OM and
IM, respectively. E: once imported, these pro-
teins can serve enzymatic functions, or in the
case of TFAM, bind to mtDNA and act as a
transcription factor for mtDNA-derived electron
transport chain complex subunits. The mito-
chondrial localization of p53 is also induced,
forming a complex with TFAM on mtDNA. F:
in organelle fusion, OPA1 facilitates expan-
sion of the IM, whereas Mfn1 and 2 permit
fusion of the OMs of adjacent organelles,
resulting in the expansion of the mitochondrial
reticulum. MDPs from the mitochondrial ge-
nome, such as MOTS-c, activate transcription
factors to promote the expression of
NuGEMPs. G: conversely, a lack of contractile
activity during muscle disuse results in similar
initial intracellular signals as during exercise,
but their patterns and temporal durations dif-
fer markedly. Notably, there is an absence of
ATP turnover-driven signaling, which removes
the drive for mitochondrial biogenesis, leading
to reduced mitochondrial content and quality
(red line). ADP, adenosine diphosphate; AMP,
adenosine monophosphate; AMPK, AMP-acti-
vated protein kinase; ATP, adenosine triphos-
phate; ETC, electron transport chain; IM, inner
membrane; Mfn1/2, mitofusins 1 and 2; MOTS-
c, mitochondrial ORF of the 12S rRNA type-c;
mtDNA, mitochondrial DNA; NuGEMPs, nuclear
genes encoding mitochondrial proteins; OM,
outer membrane; OPA1, optic atrophy protein 1;
PGC-1a, peroxisome proliferator-activated re-
ceptor gamma co-activator-1 alpha; ROS, reac-
tive oxygen species; TFAM, mitochondrial
transcription factor A; TIM, translocase of the
inner membrane; TOM, translocase of the
outer membrane.
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their enhanced protein expression with multiple exercise
bouts in both animals (70, 71) and humans (72; Table 1). As a
result, chronic exercise promotes enhancedmitochondrial vol-
ume and respiratory chain function, thereby improving mus-
clemetabolic health.

In contrast to the mitochondrial augmentation observed
with exercise, chronicmuscle disuse results in reduced biogen-
esis, perhaps in an effort to prevent the maintenance of redun-
dant organelles that may become toxic to the cell if no longer
utilized effectively (73). Various models of chronic muscle dis-
use such as denervation, immobilization, hindlimb suspen-
sion, and even ventilator-assisted respiration diminish the
contractile stimulus or abolish it entirely (74). Interestingly,
elevations in cytoplasmic calcium and ROS are also observed
during periods of muscle disuse in rodent models accompany-
ing decrements in mitochondrial respiration (21, 25; Table 1),
whereas these changes are not always observed in human sub-
jects (75). It is important to note that the magnitude and tem-
poral nature of these signals differmarkedly from the transient
changes observed with bouts of contractile activity (Fig. 1;
Table 1). These discrepancies in molecular signaling during
both physical activity and disuse generate divergent outcomes
with regard to changes inmitochondrial content and organelle
quality (Fig. 2). Further, there is no increase in contractile ac-
tivity-induced ATP turnover during disuse, which suggest this
as a dominant signal in mediating upward changes in mito-
chondrial content, as predicted earlier (76, 77). In the absence
of contraction-induced signaling, there are reductions in mito-
chondrial content, a culmination of the reduced protein
expression of PGC-1a, TFAM, and other regulators (27; Table 1).
Interestingly, p53 expression is elevated during muscle disuse,
mitigating a further decline in mitochondrial content, and it is
required for mitophagy and organelle turnover to help prevent
the accumulation of dysfunctional organelles in the absence of
contractile activity (39).

Additional Regulators of Mitochondrial Biogenesis

Although PGC-1a, TFAM, and p53 are established, tradi-
tional rheostats of mitochondrial turnover, recent exciting
work has revealed the influence of other potential regulators
in muscle. For example, chronic exercise has been shown to
elevate levels of the cytokine IL-13, which seems to be required
for endurance training-induced mitochondrial biogenesis.
Although its direct mechanism of regulation is incompletely
understood, it is proposed that IL-13 acts via the signal trans-
ducer and activator of transcription 3 (STAT3)-ERRa/c axis to
mediate the expression of a wide variety of mitochondrial
genes (78, 79). Further, the synthesis and secretion in muscle
of brain-derived neurotrophic factor (BDNF) during exercise
have important benefits for neural health, whereas also regu-
lating aspects of mitochondrial quality control in muscle (80).
In addition, short open reading frames (sORFs) encoded
within the mitochondrial genome have been recently shown
to produce bioactive mitochondrial-derived peptides (MDPs)
with a range of physiological functions (81). Mitochondrial
ORF of the 12S rRNA type-c (MOTS-c) is an exercise-inducible,
muscle-derived MDP. The activation of MOTS-c appears to be
acute in nature during exercise stress. Although increased lev-
els of muscular MOTS-c are evident immediately postexercise,
levels of this MDP increase in the blood during the exercise
bout (81). MOTS-c regulates nuclear-encoded mitochondrial

gene expression, facilitated by its AMP-activated protein kinase
(AMPK)-dependent nuclear translocation upon metabolic
stress (82), and is thus regarded as a novel “mitokine” that acts
as a regulator of adaptation to metabolic stressors (82) and
physical capacity (81). Recent studies of vitamin D receptor
(VDR) expression have revealed that its decreased expression is
associated with muscle atrophy-inducing conditions, in which
mitochondrial content and function are also diminished (83).
The aging process is associated with elevations in prostaglan-
din E2 (PGE2)-degrading enzyme (15-PGDH), which acts to
reduce the levels of prostaglandin E2 (PGE2) in muscle.
Normal levels of PGE2 are required for the incorporation of
muscle stem cells into myofibers to promote muscle growth
(84). Inhibition of 15-PGDH in aged muscle results in improve-
ments in muscle mass, mitochondrial content and function,
possibly via the activation of transcriptional regulators with
cAMP response elements in their promotors, such as PGC-1a
(84). Finally, the ablation of neuromedin B (NMB), a bombesin-
like peptide that binds to the NMB receptor (NBR), improves
mitochondrial content and oxygen consumption in the skeletal
muscle of female mice (85). These findings are in line with pre-
vious data observing that NBR KO mice exhibit partial meta-
bolic resistance to obesity induced by a high-fat diet (86). In
summary, the discovery of these novel regulators expands the
existing knowledge of the signaling networks coordinating mi-
tochondrial quality in skeletal muscle, and may be exploitable
in the future for therapeuticmetabolic purposes.

MITOPHAGY

Mitophagy

The maintenance of an optimal mitochondrial pool within
muscle requires a mechanism, whereby mitochondria of poor
quality (i.e., with reduced respiration, elevated ROS emission,
and/or impaired membrane potential) are actively removed
from the reticulum through events of organelle fission to yield
small fragments for their eventual degradation at the lyso-
some, a process termed mitophagy. A number of signaling
mechanisms coordinate the selection of mitochondria for deg-
radation via mitophagy, and interestingly, these signals also
provoke organelle biogenesis (Figs. 1 and 2), illustrating the
possibility of coordinated control of organelle turnover.

The most well-described pathway for mitophagy in muscle
involves PTEN-induced putative kinase 1 (PINK1) and Parkin,
whereby PINK1 accumulates on the OMM upon its attenuated
import with the loss of the organelle membrane potential. The
autophosphorylation of PINK1 (87) and subsequent phospho-
rylation of ubiquitin recruit the E3 ligase Parkin, which polyu-
biquitinates various OM proteins. This serves as a flag to
recruit the growing autophagosomal membrane. These ubiq-
uitin chains then tether the dysfunctional cargo to the auto-
phagosome via adaptor proteins, such as p62 and optineurin,
which connect ubiquitin to microtubule-associated protein
1A/1B-light chain 3 (LC3)-II present in the autophagosome
(88). Ubiquitin-independent signaling methods also exist and
rely on the phosphorylation of receptors present on the outer
membrane, such as BNIP3, NIX, AMBRA1, and FUNDC1, to
directly bind the organelle to LC3-II.

As the terminal site for all autophagy-related processes, the
quantity and quality of lysosomes must be considered when
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discussing the regulation of mitophagy. These organelles are
replete with enzymes responsible for recycling the autophago-
somal cargo into its constituents. Lysosomes are primarily
regulated by the microphthalmia family of transcription

factors, of which TFEB and TFE3 appear to be the most im-
portant. Upon activation, TFEB and TFE3 translocate into the
nucleus to regulate the transcription of autophagy-related
and lysosomal genes (89). Impairments in lysosomal function

Figure 2. Mitophagy and mitochondrial fission. A:
increases in cytosolic Ca2þ and AMPK activation
during exercise promotes the nuclear transloca-
tion of TFEB. TFEB binds to the promoter of lyso-
somal genes to promote lysosomal biogenesis. B:
AMPK phosphorylation also induces the activation
of PGC-1a, which can promote the nuclear translo-
cation of TFEB and aid in the transcription of lyso-
somal genes. C: AMPK promotes the initiation of
autophagy, including the activation of LC3-II and
nucleation of the phagophore with bound LC3-II
and the adaptor protein p62. D: mitochondrial dys-
function, including elevated ROS emission and a
drop in membrane potential prevents the import
of PINK1, which accumulates on the OM to recruit
parkin. Parkin ubiquitinates OM proteins that will
attach the dysfunctional organelle to the growing
phagophore via p62. E: the organelle is removed
from the network in the fission process by Drp1,
Fis1, and MFF. Fis1 is bound to the OM, whereas
Drp1 is recruited from the cytosol and binds to
MFF. Drp1 oligomerizes around the constriction
site to break off a mitochondrial fragment. F: sub-
sequently, the mitochondrion is enveloped in the
double-membraned autophagosome, which fuses
to the lysosome via LAMP1 and 2 for degradation.
G: mitophagy is also induced during muscle dis-
use, in part as a result of increased ROS-induced
AMPK activation. These signals promote FOXO3
nuclear translocation, which induces the transcrip-
tion of autophagy genes, contributing toward the
mitophagic degradation of mitochondria during
disuse. It is important to note that both the pattern
and duration of intracellular signals during exer-
cise and disuse ultimately influence downstream
signaling, generating differences in the cellular
outcomes in each condition. Green arrows repre-
sent signaling during exercise, whereas the red
arrows indicate that during disuse. AAs, amino
acids; AMPK, AMP-activated protein kinase; DWm,
mitochondrial membrane potential; Drp1, dynamin-
related protein 1; ETC, electron transport chain;
Fis1, mitochondrial fission 1 protein; FOXO3, fork-
head box protein O3; LAMP1/2, lysosomal-associ-
ated membrane protein 1 and 2; LC3, microtubule-
associated protein 1A/1B-light chain 3; MFF, mito-
chondrial fission factor; OMM, outer mitochondrial
membrane; PGC-1a, peroxisome proliferator-acti-
vated receptor gamma co-activator-1 alpha; PINK1,
PTEN-induced putative kinase 1; ROS, reactive ox-
ygen species; TFEB, transcription factor EB.
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can result in declines in autophagy and the accumulation of
indigestible material known as lipofuscin, common in aging
and prolongedmuscle disuse (90, 91).

Mitophagy in Exercise and Disuse
Concomitant with the transient increases in the expression

of genes regulating mitochondrial dynamics and biogenesis, a
single bout of exercise is capable of initiatingmitophagy signal-
ing in both human (92) and animal models (22, 93; Table 1).
The classic exercise-induced intracellular signals (Figs. 1 and 2)
also serve to stimulate mitochondrial degradation during con-
tractile activity. The energetic imbalance brought on by ATP
hydrolysis and the formation of AMP stimulates AMPK, a ki-
nase that seems to be required for exercise-inducedmitophagy
(22; Table 1). AMPK coordinates 1) the formation of the auto-
phagosome (22), 2) the nuclear localization of TFEB and TFE3,
and 3) it appears to also localize to mitochondria to stimulate
exercise-induced mitophagy (94). ROS have been shown to aid
in the intralysosomal breakdown of organelles via sensitization
of MCOLN1, the lysosomal calcium channel, although the
increase in cytoplasmic Ca2þ , either via the lysosome or the
sarcoplasmic reticulum, activates calcineurin, serving to de-
phosphorylate TFEB and TFE3 and allowing their nuclear
translocation (95). As discussed earlier, these signals also con-
verge to activate PGC-1a, which may help to coordinate the
induction of mitophagy following exercise (93), as it is known
to impact TFEB transcription and cellular localization (96).

Althoughmultiplemitophagy pathways are stimulated with
acute exercise, Parkin seems to be required for initiating
mitophagy flux in muscle, suggesting that it acts as the pre-
dominant pathway in this tissue (97, 98). The overexpression
of Parkin is also protective against the metabolic decrements
and muscle atrophy observed in aging muscle, likely by
enhancing mitochondrial clearance (99). When exercise is
repeated in the form of endurance training, phenotype
changes not only include an increase in mitochondria but are
also accompanied by augmentations in lysosomal content,
increasing the capacity for cellular recycling (23). Despite this,
exercise-induced mitophagy flux is unchanged or even
reduced following training in comparison with untrained
muscle (23, 49). The reason for this appears to be attenuated
cellular signaling inmuscle with a highmitochondrial content
and quality (29), resulting in a lower stimulus for mitophagy
(and biogenesis) pathway activation. Nonetheless, with train-
ing, muscle cells have adapted to the appropriate machinery
and are primed for mitochondrial clearance, improving the
capacity of the cell to maintain optimal organelle quality in
response to a future stressor.

In contrast, conditions of muscle disuse result in mitochon-
drial dysfunction and concomitant atrophy. Mitochondrial
content diminishes within the first week, accompanied by
early increases in mitophagy flux, in concert with the expres-
sion of numerous lysosomal proteins (39, 100). Subsequently,
a decline in mitophagy markers has been observed, indicating
possible impairments in the autophagy machinery during
more prolonged disuse (25, 101; Table 1). However, it should be
noted that some groups have reported increased mitophagy
with disuse, for example during 14 days of hindlimb unload-
ing, likely stemming from divergent approaches used to mea-
sure mitophagy flux (102). Since mitochondrial dysfunction is
universally apparent with disuse, it seems that the need for

clearance does not match the capacity for degradation. The
appearance of undigested lipofuscin and autophagosomes
accumulated in muscle supports this concept (91), indicating
that the terminal stages of autophagy, including autolysoso-
mal fusion and degradation, may be impaired. Whether the
enhanced expression of lysosomal proteins, or enhanced lyso-
somal activity, could also prove to be therapeutic in muscle
wasting associated with disuse and aging remains to be estab-
lished and is an exciting direction for future work.

MITOCHONDRIAL PROTEIN QUALITY
CONTROL

Mechanisms of Protein Quality Control

Mitochondria are equipped with internal protein machin-
ery that trigger adaptive responses during stress to sustain or-
ganelle protein homeostasis. In this respect, the regulation of
protein quality control (PQC) is of great interest, since the
accumulation of toxic protein aggregates is associated with
many disease states, particularly noteworthy in neurodegen-
eration. PQC involves the correct import, targeting, folding,
and turnover of proteins, in appropriate stoichiometry, to
maintain optimal respiratory chain function. To facilitate
this, a specialized protein import machinery (PIM) is localized
in the outer and inner membranes as the translocase of the
outer membrane (TOM) and translocase of the inner mem-
brane (TIM) complexes, respectively, for the selective import
of proteins toward specific mitochondrial sub-compartments
(103). Within the organelle, chaperones such as 60 kDa heat
shock protein (HSP60), HSP10, and mtHSP70 act to mobilize
and refold proteins, whereas proteases in the matrix such as
lon protease 1 (LONP1), caseinolytic mitochondrial matrix
peptidase proteolytic subunit (ClpP), and membrane-bound
m-ATPase associated with diverse cellular activities (m-AAA)
protease serve to degrade unwanted and misfolded proteins.
An additional family of proteases exists in the intermembrane
space (IMS) to also serve this function, including presenilins-
associated rhomboid-like protein (PARL), YME1 like 1 ATPase
(YME1L1), high-temperature requirement factor A2 (Htra2/
OMI), and OMA1. These proteases monitor protein quality,
and they are also involved in determining cell fate. For exam-
ple, IMS proteases cleave OPA1 to influence mitochondrial
morphology (4), PARL modulates mitophagy by degrading
PINK1 (104), and LONP1 is responsible for the degradation of
TFAM to maintain optimal levels of this transcription factor,
therebymodulatingmtDNA transcription (105).

The Mitochondrial Unfolded Protein Response (UPRmt)

The mitochondrial unfolded protein response (UPRmt) is a
PQCmechanism, involving the increased expression of proteo-
static enzymes in response to various forms of mitochondrial
dysfunction. It also invokes retrograde signaling to the nucleus
to trigger an adaptive transcriptional program with the aim of
improving protein folding capacity and mitochondrial func-
tion (106). The upregulation of the UPRmt -regulating activat-
ing transcription factors ATF4, ATF5, and CHOP, as well as
expression of UPRmtmachinery inmuscle, is observed inmito-
chondrial myopathy (107) and during high-fat feeding (108),
two conditions characterized by decrements in respiration
and increases in ROS emission. Investigations of the UPRmt
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and implications for the regulation of mitochondrial function
have thus far been largely carried out in cardiac muscle.
Activation of the UPRmt mediates mitochondrial recovery dur-
ing cardiac ischemia-reperfusion injury, an outcome that is
reliant on the expression of ATF5 (109), which localizes to the
nucleus to aid in the transcription of UPRmt genes during mi-
tochondrial stress (106). This novel protective role of ATF5
may be reliant on PGC-1a, creating a link between the regula-
tion of protein homeostasis and organelle biogenesis (110).

Adequate function of both the protein import system and
resident mitochondrial PQC enzymes is imperative for the
maintenance of organelle quality inmuscle. For example, abla-
tion of the proteases LONP1 or ClpP, or of chaperone HSP60,
elicits the development of severe clinical mitochondrial cyto-
pathies, triggered by respiratory chain defects, ROS production,
and a loss of mtDNA, manifesting in myopathy and cardiomy-
opathy (111, 112). In particular, the muscle-specific loss of
LONP1 generates a detrimental phenotype characterized by
atrophy, weakness, reduced oxidative capacity, function,
and excessive mitophagy (113). Alternatively, the attenua-
tion of protein import by knocking down a component of
the TIM complex, Tim23, induces the expression of UPRmt

targets in muscle and increases ROS emissions, indicative
of mitochondrial dysfunction (103). Although research in
this area remains in its infancy, these findings demonstrate
that the molecular machinery in PQC has a significant role
in the maintenance of mitochondrial homeostasis, promot-
ing the health of mammalian striatedmuscle.

Mitochondrial Protein Quality Control in Exercise and
Disuse

Recent work using chronic contractile activity in rodents
has shown that UPRmt activation and expression of mitochon-
drial chaperones precedes organelle biogenesis signaling (37).
Treadmill training also improves the expression of UPRmt

markers in aged rodents, coinciding with improvements in
mitochondrial content (38; Table 1). Chronic exercise also
blunts the increases in UPRmt gene expression in response to
an acute bout of exercise. This is indicative of attenuated pro-
teotoxic stress during contractile activity due to a larger abun-
dance of protective PQC machinery, as an adaptation to
transient spikes in UPRmt signaling, affording long-term pro-
tection against stress (114). The “mito-nuclear balance,” refer-
ring to the stoichiometric proportions of proteins encoded by
the nuclear and mitochondrial genomes, may also be used as
an assessment of mitochondrial PQC. It appears that endur-
ance-trained individuals retain a smaller mito-nuclear protein
ratio in comparison with untrained subjects, suggesting that
improved PQC with chronic exercise may contribute to
improvedmitochondrial content and aerobic capacity (17).

In contrast to the response evident with exercise, the phe-
notype brought about by chronic muscle disuse is one of the
poor quality organelles, despite the enhancement of mitopha-
gic processes. Using denervation as a model of disuse, recent
findings indicate that the muscle-specific ablation of LONP
expression, a downstream UPRmt target of ATF5, exacerbates
denervation-induced reductions in muscle size and strength
(113). Furthermore, denervation results in the induction of
UPRmt protein targets, and in particular, induces the rapid nu-
clear localization of ATF5 (39; Table 1). These findings occur

in conjunction with enhanced autophagy and signaling to-
ward lysosomal biogenesis, intertwining the UPRmt with other
established mitochondrial quality control pathways in the
molecular response to energetic stress inmuscle disuse.

COORDINATION OF MITOCHONDRIAL
REDOX MECHANISMS

Antioxidant Machinery

The antioxidant system protects the cellular environment
from excessive ROS production, thus preserving the integrity
and quality of the mitochondrial reticulum. However, when
produced in moderate amounts, ROS act as signaling mole-
cules to regulate antioxidant enzyme expression and mitoph-
agy. Thus, there is a necessity for ROS levels to be tightly
controlled in the balancing act of regulating muscle andmito-
chondrial health.

At the forefront of antioxidant signaling is the transcription
factor nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 is
normally sequestered in the cytoplasm by its negative regula-
tor Keap1, rendering it inactive and prone to degradation by
the proteasome. Oxidative stress disrupts Nrf2-Keap1 binding
to promote Nrf2 nuclear translocation and the subsequent
transcription of antioxidant genes (34). In the nucleus, Nrf2
heterodimerizes with small Maf proteins, which bind to anti-
oxidant response element (ARE) sequences on the promoter
region of target genes, including antioxidant enzymes such as
NAD(P)H quinone dehydrogenase 1 (NQO1) and heme oxygen-
ase-1 (HO-1; Fig. 3). Surprisingly, the ablation of Nrf2 does not
appear to influence basal mitochondrial content and quality
in muscle (43). This suggests the existence of pathway redun-
dancies in mitochondrial redox control in muscle. However,
the value of theNrf2-Keap1 system ismore evident under con-
ditions in which ROS are modulated across a wider range,
such as that which occurs during exercise, disuse, and aging.

Nrf2 and Antioxidants in Mitochondrial Adaptations to
Exercise and Disuse

Coinciding with increases in mitochondrial ROS emission,
an acute bout of exercise enhances Nrf2-ARE binding (43),
and increases Nrf2 and HO-1 mRNA (34, 115; Table 1).
However, whether Nrf2 protein is increased with training
remains in question (43, 115). In conditions of enhanced phys-
iological demand such as acute and chronic exercise, Nrf2 is
required for the upregulation of antioxidant capacity (34), mi-
tochondrial content, bioenergetics (116), as well as improve-
ments in muscle mass and function (117). Recent work has
also shown that Nrf2 also mediates fission by regulating the
stability of Drp1, contributing to training-induced improve-
ments in mitochondrial morphology. Furthermore, treatment
with the Nrf2 activator sulforaphane rescues mitochondrial
dysfunction and the sarcopenic phenotype in aged animals,
improving exercise capacity and reducing frailty (116).

Chronic disuse, including during spaceflight, denervation,
and hindlimb unloading, results in increases in Nrf2 within
muscle, most likely serving to counteract increases in ROS
emission that occur under these conditions (118, 119). Hindlimb
unloading for 3 days upregulates Nrf2, but is reduced by day 7,
coinciding with the opposite pattern observed in H2O2 emis-
sion (26; Table 1). In fact, the loss of Nrf2 during disuse
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Figure 3. Antioxidant capacity and protein
quality control. A: contractile activity and mus-
cle disuse both induce signaling toward the
expression of antioxidant and mitochondrial
protein quality control machinery. B: increased
ROS production causes the disassociation of
the transcription factor Nrf2 from inhibitory
KEAP1 to promote its nuclear translocation.
Binding to ARE elements on DNA, Nrf2 pro-
motes the transcription of antioxidant genes
including NQO1 and HO-1. C: these enzymes
contribute toward ROS scavenging in the cyto-
sol. D: mitochondrial PQC encompasses the
import, folding, transport, and degradation of
proteins within the organelle. Matrix chaper-
ones include mtHSP70 and HSP60, which
assist in the import and folding of proteins.
LONP, ClpP, and membrane-bound m-AAA are
matrix proteases, whereas those in the IMS
include PARL, OMI, OMA1, and membrane-
bound YME1L1. E: the efflux of peptides into the
cytosol derived from ClpP-mediated proteolysis
is suggested to inhibit the mitochondrial import
of the transcription factor ATF5, subsequently
prompting its nuclear localization. There, ATF5
binds to UPRmt elements on DNA and assists in
the transcription of UPRmt genes, as a retro-
grade signal from the mitochondrion. F: these
UPRmt genes include mtHSP70, HSP60, and
LONP, which are then imported to enhance the
proteomic folding and handling capacity of the
organelle. ARE, antioxidant response element;
ATF5, activating transcription factor 5; ClpP,
caseinolytic mitochondrial matrix peptidase
proteolytic subunit; FOXO3, forkhead box O3;
HO-1, heme oxygenase-1; HSP60, 60 kDa heat
shock protein; Htra2/OMI, high-temperature
requirement factor A2; IMS, intermembrane
space; KEAP1, kelch-like ECH-associated pro-
tein 1; LONP, lon protease; Maf, muscular apo-
neurotic fibrosarcoma; mtHSP70, 75 kDa
mitochondrial heat shock protein; NQO1, NAD
(P)H quinone dehydrogenase 1; Nrf2, nuclear
factor erythroid 2-related factor 2; PARL, prese-
nilins-associated rhomboid-like protein; PQC,
protein quality control; UPRmt, unfolded protein
response; YME1L1, YME1 like 1 ATPase.
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aggravates increases in oxidative stress (36) and shifts metabo-
lism toward glycolysis (118) but does not influence the degree
of muscle atrophy (118). Collectively, these findings implicate
the Nrf2 regulatory network alongside mitochondrial dynam-
ics, turnover, and PQC in the maintenance of mitochondrial
and skeletal muscle health with exercise, and in the ROS-
inducedmyopathic phenotype during inactivity.

CONCLUSION

Coordinated by multiple branches of regulatory signaling,
the morphology, quantity and quality of mitochondria are
subject to significant regulation basally and during physio-
logical stressors, granting muscle with its infamous mallea-
ble nature. Understanding the traditional pathways, and
discovering novel biological networks that coordinate mito-
chondrial fine-tuning in skeletal muscle, including organelle
remodeling, biogenesis, mitophagy, PQC, and antioxidant
capacity is essential in interpreting the molecular adapta-
tions of muscle to imposed stressors, such as exercise and
disuse. This comprehension helps us to conceptualize the
chronology and progression of pathway activation during
physiological challenges, culminating in energetically profi-
cient organelles that are integral for superior oxidative and
metabolic function. The existence of redundant regulatory
networks that control mitochondrial function presents
opportunities for these pathways to be exploited for thera-
peutic interventions in the prevention of metabolic diseases,
for enhancing muscle performance, and ultimately to
improvemuscle health and well-being.
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